ferinの競プロ帳

競プロについてのメモ

Educational Codeforces Round 83 D - Count the Arrays

問題ページ

数列内の一番大きい数を x とします。同じ数のペアを y (y  \lt  x) とします。このときの数列は \cdots\ y\ \cdots\ x\ \cdots\ y\ \cdots となっています。y の選び方は x-1 通りあります。

数列に存在する数として x-2 個から n-3 個を選びます。これは \binom{x-2}{n-3} 通りあります。

n-3 個の数を x の左と右のどちらにするか?を決めます。単調増加な列にするので、数の集合さえ決めれば列は一意に定まります。これは 2^{n-3} 通りあります。

x について存在する数列が何通りあるか数え、足し上げることで答えが求まります。つまり、答えは \sum_{x=n-1}^{m} (x-1) \times 2^{n-3} \binom{x-2}{n-3} です。

#include <bits/stdc++.h>  
using namespace std;  
using ll = long long;  
using PII = pair<ll, ll>;  
#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)  
#define REP(i, n) FOR(i, 0, n)  
#define ALL(x) x.begin(), x.end()  
template<typename T> void chmin(T &a, const T &b) { a = min(a, b); }  
template<typename T> void chmax(T &a, const T &b) { a = max(a, b); }  
struct FastIO {FastIO() { cin.tie(0); ios::sync_with_stdio(0); }}fastiofastio;  
#ifdef DEBUG_   
#include "../program_contest_library/memo/dump.hpp"  
#else  
#define dump(...)  
#endif  
const ll INF = 1LL<<60;  
  
template<ll MOD>  
struct modint {  
    ll x;  
    modint(): x(0) {}  
    modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {}  
    static constexpr ll mod() { return MOD; }  
    // e乗  
    modint pow(ll e) {  
        ll a = 1, p = x;  
        while(e > 0) {  
            if(e%2 == 0) {p = (p*p) % MOD; e /= 2;}  
            else {a = (a*p) % MOD; e--;}  
        }  
        return modint(a);  
    }  
    modint inv() const {  
        ll a=x, b=MOD, u=1, y=1, v=0, z=0;  
        while(a) {  
            ll q = b/a;  
            swap(z -= q*u, u);  
            swap(y -= q*v, v);  
            swap(b -= q*a, a);  
        }  
        return z;  
    }  
    // Comparators  
    bool operator <(modint b) { return x < b.x; }  
    bool operator >(modint b) { return x > b.x; }  
    bool operator<=(modint b) { return x <= b.x; }  
    bool operator>=(modint b) { return x >= b.x; }  
    bool operator!=(modint b) { return x != b.x; }  
    bool operator==(modint b) { return x == b.x; }  
    // Basic Operations  
    modint operator+(modint r) const { return modint(*this) += r; }  
    modint operator-(modint r) const { return modint(*this) -= r; }  
    modint operator*(modint r) const { return modint(*this) *= r; }  
    modint operator/(modint r) const { return modint(*this) /= r; }  
    modint &operator+=(modint r) {  
        if((x += r.x) >= MOD) x -= MOD;  
        return *this;  
    }  
    modint &operator-=(modint r) {  
        if((x -= r.x) < 0) x += MOD;  
        return *this;  
    }  
    modint &operator*=(modint r) {  
    #if !defined(_WIN32) || defined(_WIN64)  
        x = x * r.x % MOD; return *this;  
    #endif  
        unsigned long long y = x * r.x;  
        unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m;  
        asm(  
            "divl %4; \n\t"  
            : "=a" (d), "=d" (m)  
            : "d" (xh), "a" (xl), "r" (MOD)  
        );  
        x = m;  
        return *this;  
    }  
    modint &operator/=(modint r) { return *this *= r.inv(); }  
    // increment, decrement  
    modint operator++() { x++; return *this; }  
    modint operator++(signed) { modint t = *this; x++; return t; }  
    modint operator--() { x--; return *this; }  
    modint operator--(signed) { modint t = *this; x--; return t; }  
    // 平方剰余のうち一つを返す なければ-1  
    friend modint sqrt(modint a) {  
        if(a == 0) return 0;  
        ll q = MOD-1, s = 0;  
        while((q&1)==0) q>>=1, s++;  
        modint z=2;  
        while(1) {  
            if(z.pow((MOD-1)/2) == MOD-1) break;  
            z++;  
        }  
        modint c = z.pow(q), r = a.pow((q+1)/2), t = a.pow(q);  
        ll m = s;  
        while(t.x>1) {  
            modint tp=t;  
            ll k=-1;  
            FOR(i, 1, m) {  
                tp *= tp;  
                if(tp == 1) { k=i; break; }  
            }  
            if(k==-1) return -1;  
            modint cp=c;  
            REP(i, m-k-1) cp *= cp;  
            c = cp*cp, t = c*t, r = cp*r, m = k;  
        }  
        return r.x;  
    }  
  
    template<class T>  
    friend modint operator*(T l, modint r) { return modint(l) *= r; }  
    template<class T>  
    friend modint operator+(T l, modint r) { return modint(l) += r; }  
    template<class T>  
    friend modint operator-(T l, modint r) { return modint(l) -= r; }  
    template<class T>  
    friend modint operator/(T l, modint r) { return modint(l) /= r; }  
    template<class T>  
    friend bool operator==(T l, modint r) { return modint(l) == r; }  
    template<class T>  
    friend bool operator!=(T l, modint r) { return modint(l) != r; }  
    // Input/Output  
    friend ostream &operator<<(ostream& os, modint a) { return os << a.x; }  
    friend istream &operator>>(istream& is, modint &a) {   
        is >> a.x;  
        a.x = ((a.x%MOD)+MOD)%MOD;  
        return is;  
    }  
    friend string to_frac(modint v) {  
        static map<ll, PII> mp;  
        if(mp.empty()) {  
            mp[0] = mp[MOD] = {0, 1};  
            FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) {  
                mp[(modint(i) / j).x] = {i, j};  
            }  
        }  
        auto itr = mp.lower_bound(v.x);  
        if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr;  
        string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first));  
        if(itr->second.second > 1) {  
            ret += '/';  
            ret += to_string(itr->second.second);  
        }  
        return ret;  
    }  
};  
using mint = modint<998244353>;  
  
// 前計算O(N) クエリO(1)  
mint combi(ll N, ll K) {  
    const int maxN=5e5; // !!!  
    static mint fact[maxN+1]={},factr[maxN+1]={};  
    if (fact[0]==0) {  
        fact[0] = factr[0] = 1;  
        FOR(i, 1, maxN+1) fact[i] = fact[i-1] * i;  
        factr[maxN] = fact[maxN].inv();  
        for(ll i=maxN-1; i>=0; --i) factr[i] = factr[i+1] * (i+1);  
    }  
    if(K<0 || K>N) return 0; // !!!  
    return factr[K]*fact[N]*factr[N-K];  
}  
  
int main(void) {  
    ll n, m;  
    cin >> n >> m;  
  
    mint ret = 0;  
    FOR(i, n-1, m+1) ret += (i-1) * combi(i-2, n-3);  
    ret *= mint(2).pow(n-3);  
  
    cout << ret << endl;  
  
    return 0;  
}  

dp[i番目まで][最後がj] から考察をはじめた結果、一生高速にならなくて終了した
最大の数だけ決めればよくて、i番目はあんまり気にしなくていい