aoj2397 Three-way Branch
問題ページ
障害物がなければ行列累乗をすればよい.障害物に対応するため障害物が存在する行ごとに区切って考える.行列累乗で 列目に到達する方法を求めたあと,障害物が存在する位置に到達する方法を0通りに置き換える. で解けた.
#include <bits/stdc++.h> using namespace std; using ll = long long; using PII = pair<ll, ll>; #define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(x) x.begin(), x.end() template<typename T> void chmin(T &a, const T &b) { a = min(a, b); } template<typename T> void chmax(T &a, const T &b) { a = max(a, b); } struct FastIO {FastIO() { cin.tie(0); ios::sync_with_stdio(0); }}fastiofastio; #ifdef DEBUG_ #include "../program_contest_library/memo/dump.hpp" #else #define dump(...) #endif const ll INF = 1LL<<60; template<ll MOD> struct modint { ll x; modint(): x(0) {} modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {} static constexpr ll mod() { return MOD; } // e乗 modint pow(ll e) { ll a = 1, p = x; while(e > 0) { if(e%2 == 0) {p = (p*p) % MOD; e /= 2;} else {a = (a*p) % MOD; e--;} } return modint(a); } modint inv() const { ll a=x, b=MOD, u=1, y=1, v=0, z=0; while(a) { ll q = b/a; swap(z -= q*u, u); swap(y -= q*v, v); swap(b -= q*a, a); } return z; } // Comparators bool operator <(modint b) { return x < b.x; } bool operator >(modint b) { return x > b.x; } bool operator<=(modint b) { return x <= b.x; } bool operator>=(modint b) { return x >= b.x; } bool operator!=(modint b) { return x != b.x; } bool operator==(modint b) { return x == b.x; } // Basic Operations modint operator+(modint r) const { return modint(*this) += r; } modint operator-(modint r) const { return modint(*this) -= r; } modint operator*(modint r) const { return modint(*this) *= r; } modint operator/(modint r) const { return modint(*this) /= r; } modint &operator+=(modint r) { if((x += r.x) >= MOD) x -= MOD; return *this; } modint &operator-=(modint r) { if((x -= r.x) < 0) x += MOD; return *this; } modint &operator*=(modint r) { #if !defined(_WIN32) || defined(_WIN64) x = x * r.x % MOD; return *this; #endif unsigned long long y = x * r.x; unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m; asm( "divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (MOD) ); x = m; return *this; } modint &operator/=(modint r) { return *this *= r.inv(); } // increment, decrement modint operator++() { x++; return *this; } modint operator++(signed) { modint t = *this; x++; return t; } modint operator--() { x--; return *this; } modint operator--(signed) { modint t = *this; x--; return t; } // 平方剰余のうち一つを返す なければ-1 friend modint sqrt(modint a) { if(a == 0) return 0; ll q = MOD-1, s = 0; while((q&1)==0) q>>=1, s++; modint z=2; while(1) { if(z.pow((MOD-1)/2) == MOD-1) break; z++; } modint c = z.pow(q), r = a.pow((q+1)/2), t = a.pow(q); ll m = s; while(t.x>1) { modint tp=t; ll k=-1; FOR(i, 1, m) { tp *= tp; if(tp == 1) { k=i; break; } } if(k==-1) return -1; modint cp=c; REP(i, m-k-1) cp *= cp; c = cp*cp, t = c*t, r = cp*r, m = k; } return r.x; } template<class T> friend modint operator*(T l, modint r) { return modint(l) *= r; } template<class T> friend modint operator+(T l, modint r) { return modint(l) += r; } template<class T> friend modint operator-(T l, modint r) { return modint(l) -= r; } template<class T> friend modint operator/(T l, modint r) { return modint(l) /= r; } template<class T> friend bool operator==(T l, modint r) { return modint(l) == r; } template<class T> friend bool operator!=(T l, modint r) { return modint(l) != r; } // Input/Output friend ostream &operator<<(ostream& os, modint a) { return os << a.x; } friend istream &operator>>(istream& is, modint &a) { is >> a.x; a.x = ((a.x%MOD)+MOD)%MOD; return is; } friend string to_frac(modint v) { static map<ll, PII> mp; if(mp.empty()) { mp[0] = mp[MOD] = {0, 1}; FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) { mp[(modint(i) / j).x] = {i, j}; } } auto itr = mp.lower_bound(v.x); if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr; string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first)); if(itr->second.second > 1) { ret += '/'; ret += to_string(itr->second.second); } return ret; } }; using mint = modint<1000000009>; // 有限体の行列 struct matrix { int h, w; vector<mint> dat; matrix() {} matrix(int h, int w) : h(h), w(w), dat(h*w) {} mint& get(int y, int x) { return dat[y*w+x]; } mint get(int y, int x) const { return dat[y*w+x]; } matrix& operator+=(const matrix& r) { assert(h==r.h && w==r.w); REP(i, h*w) dat[i] += r.dat[i]; return *this; } matrix& operator-=(const matrix& r) { assert(h==r.h && w==r.w); REP(i, h*w) dat[i] -= r.dat[i]; return *this; } matrix& operator*=(const matrix& r) { assert(w==r.h); matrix ret(h, w); REP(i, h) REP(j, r.w) REP(k, w) { ret.dat[i*r.w+j] += dat[i*w+k] * r.dat[k*r.w+j]; } return (*this) = ret; } matrix operator+(const matrix& r) { return matrix(*this) += r; } matrix operator-(const matrix& r) { return matrix(*this) -= r; } matrix operator*(const matrix& r) { return matrix(*this) *= r; } bool operator==(const matrix& a) { return dat==a.dat; } bool operator!=(const matrix& a) { return dat!=a.dat; } friend matrix pow(matrix p, ll n) { matrix ret(p.h, p.w); REP(i, p.h) ret.get(i, i) = 1; while(n > 0) { if(n&1) {ret *= p; n--;} else {p *= p; n >>= 1;} } return ret; } // 階段行列を求める O(HW^2) friend int gauss_jordan(matrix& a) { int rank = 0; REP(i, a.w) { int pivot = -1; FOR(j, rank, a.h) if(a.get(j,i) != 0) { pivot = j; break; } if(pivot == -1) continue; REP(j, a.w) swap(a.get(rank,j), a.get(pivot,j)); const mint inv = a.get(rank,i).inv(); REP(j, a.w) a.get(rank,j) *= inv; REP(j, a.h) if(j != rank && a.get(j,i) != 0) { const mint num = a.get(j,i); REP(k, a.w) a.get(j,k) -= a.get(rank,k) * num; } rank++; } return rank; } friend ostream &operator<<(ostream& os, matrix a) { os << endl; REP(i, a.h) { REP(j, a.w) os << a.get(i,j) << " "; if(i+1!=a.h) os << endl; } return os; } }; ll testcase; void solve() { ll w, h, n; cin >> w >> h >> n; if(w == 0) exit(0); map<ll, vector<ll>> mp; REP(i, n) { ll x, y; cin >> x >> y; x--, y--; mp[y].push_back(x); } mp[h-1].push_back(0); matrix mat(w, w); REP(i, w) for(ll j=max(0LL,i-1); j<min(i+2,w); ++j) mat.get(i,j) = 1; ll pre = 0; vector<mint> cnt(w); cnt[0] = 1; for(auto p: mp) { ll y = p.first; auto v = p.second; matrix pw = pow(mat, y-pre); vector<mint> ncnt(w); REP(i, w) REP(j, w) ncnt[i] += pw.get(i,j) * cnt[j]; swap(cnt, ncnt); for(auto i: v) cnt[i] = 0; pre = y; } cout << "Case " << testcase+1 << ": " << cnt[w-1] << endl; testcase++; } int main(void) { while(1) solve(); return 0; }