M-SOLUTIONS プロコンオープン C - Best-of-(2n-1)
解法
とする.
高橋くんが勝つのが 回,青木くんが勝つのが 回,引き分けが 回起きるとする.
期待値の前にまず確率がどのようになるか考える.高橋くんが最後に勝つのは確定で,それ以外の部分は確率 の操作が 回,確率 の操作が 回,確率 の操作が 回起きるような事象の確率である.高橋くんが勝つ確率は で,後半の事象の確率は独立試行であることを用いて となる.よって確率は となる.
期待値の定義から確率とゲームの回数の積を足し合わせることで期待値を計算すると となる.無限級数の部分をWolframAlpha先生に計算してもらうと と閉じた形になる.あとは で和を計算すれば期待値が求まる.
https://ja.wolframalpha.com/input/?i=sum[(i%2Bj%2Bn)!%2F(i!j!(n-1)!)+an+bi+(1-a-b)j,+{j,+0,+inf}]&assumption="i"+->+"Variable"
青木くんが勝つ場合についても同様に計算でき,足し合わせることで答えが求まる.
#include <bits/stdc++.h> using namespace std; using ll = long long; // #define int ll using PII = pair<ll, ll>; #define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(x) x.begin(), x.end() template<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); } template<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); } template<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; } template<typename T> T ceil(T a, T b) { return a/b + !!(a%b); } template<typename T> vector<T> make_v(size_t a) { return vector<T>(a); } template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts) { return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } template<typename T,typename V> typename enable_if<is_class<T>::value==0>::type fill_v(T &t, const V &v) { t=v; } template<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type fill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); } template<class S,class T> ostream &operator <<(ostream& out,const pair<S,T>& a) { out<<'('<<a.first<<','<<a.second<<')'; return out; } template<class T> ostream &operator <<(ostream& out,const vector<T>& a){ out<<'['; for(const T &i: a) out<<i<<','; out<<']'; return out; } template<class T> ostream &operator <<(ostream& out, const set<T>& a) { out<<'{'; for(const T &i: a) out<<i<<','; out<<'}'; return out; } template<class T, class S> ostream &operator <<(ostream& out, const map<T,S>& a) { out<<'{'; for(auto &i: a) out<<i<<','; out<<'}'; return out; } int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL const int INF = 1<<30; const ll LLINF = 1LL<<60; const ll MOD = 1000000007; template<ll MOD> struct modint { ll x; modint(): x(0) {} modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {} static constexpr ll mod() { return MOD; } friend modint pow(modint x, ll e) { modint a = 1; while(e > 0) { if(e%2 == 0) {x *= x; e /= 2;} else {a *= x; e--;} } return a; } modint inv() const { ll a=x, b=MOD, u=1, y=1, v=0, z=0; while(a) { ll q = b/a; swap(z -= q*u, u); swap(y -= q*v, v); swap(b -= q*a, a); } return z; } // Comparators bool operator <(modint b) { return x < b.x; } bool operator >(modint b) { return x > b.x; } bool operator<=(modint b) { return x <= b.x; } bool operator>=(modint b) { return x >= b.x; } bool operator!=(modint b) { return x != b.x; } bool operator==(modint b) { return x == b.x; } // Basic Operations modint operator+(modint r) const { return modint(*this) += r; } modint operator-(modint r) const { return modint(*this) -= r; } modint operator*(modint r) const { return modint(*this) *= r; } modint operator/(modint r) const { return modint(*this) /= r; } modint &operator+=(modint r) { if((x += r.x) >= MOD) x -= MOD; return *this; } modint &operator-=(modint r) { if((x -= r.x) < 0) x += MOD; return *this; } modint &operator*=(modint r) { #if !defined(_WIN32) || defined(_WIN64) x = x * r.x % MOD; return *this; #endif unsigned long long y = x * r.x; unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m; asm( "divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (MOD) ); x = m; return *this; } modint &operator/=(modint r) { return *this *= r.inv(); } // increment, decrement modint operator++() { x++; return *this; } modint operator++(signed) { modint t = *this; x++; return t; } modint operator--() { x--; return *this; } modint operator--(signed) { modint t = *this; x--; return t; } }; using mint = modint<1000000007>; template<class T> mint operator*(T l, mint r) { return mint(l) *= r; } template<class T> mint operator+(T l, mint r) { return mint(l) += r; } template<class T> mint operator-(T l, mint r) { return mint(l) -= r; } template<class T> mint operator/(T l, mint r) { return mint(l) /= r; } template<class T> bool operator==(T l, mint r) { return mint(l) == r; } template<class T> bool operator!=(T l, mint r) { return mint(l) != r; } // Input/Output ostream &operator<<(ostream& os, mint a) { return os << a.x; } istream &operator>>(istream& is, mint &a) { return is >> a.x; } string to_frac(mint v) { static map<ll, PII> mp; if(mp.empty()) { mp[0] = mp[mint::mod()] = {0, 1}; FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) { mp[(mint(i) / j).x] = {i, j}; } } auto itr = mp.lower_bound(v.x); if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr; string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first)); if(itr->second.second > 1) { ret += '/'; ret += to_string(itr->second.second); } return ret; } signed main(void) { cin.tie(0); ios::sync_with_stdio(false); ll n, aa, bb, cc; cin >> n >> aa >> bb >> cc; mint fact = 1; FOR(i, 1, n) fact *= i; mint a(aa), b(bb), c(cc); a /= 100, b /= 100, c /= 100; mint ret = 0; mint x = 1, y = 1; FOR(i, 1, n+1) x *= i; REP(i, n) { if(i) x *= n+i, y *= i; ret += pow(a, n) * pow(b, i) * x / pow(a+b, i+n+1) / y / fact; } x = 1, y = 1; FOR(i, 1, n+1) x *= i; REP(i, n) { if(i) x *= n+i, y *= i; ret += pow(b, n) * pow(a, i) * x / pow(a+b, i+n+1) / y / fact; } cout << ret << endl; return 0; }